Feasibility of ionic liquids as liquid thermal storage media and heat transfer fluids in a solar thermal power plant was investigated. Many ionic liquids such as [C4min][PF6], [C8mim][PF6], [C4min][bistrifluromethane sulflonimide], [C4min][BF4], [C8mim][BF4], and [C4min][bistrifluromethane sulflonimide] were synthesized and characterized using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR), viscometry, and some other methods. Properties such as decomposition temperature, melting point, viscosity, density, heat capacity, and thermal expansion coefficient were measured. The calculated storage density for [C8mim][PF6] is 378 MJ/m3 when the inlet and outlet field temperatures are 210°C and 390°C. For a single ionic liquid, [C4mim][BF4], the liquid temperature range is from −75°C to 459°C. It is found that ionic liquids have advantages of high density, wide liquid temperature range, low viscosity, high chemical stability, non-volatility, high heat capacity, and high storage density. Based on our experimental results, it is concluded that ionic liquids could be excellent liquid thermal storage media and heat transfer fluids in solar thermal power plant.

This content is only available via PDF.
You do not currently have access to this content.