Hybrid solar lighting (HSL) has been successfully demonstrated as a means of collecting sunlight and transferring it through optical fibers into a building. The collected solar energy is primarily intended for illumination purposes. However, this technology may have an application in solar water heating. For a traditional solar water heating system, energy is required to pump the water to the roof and collected solar energy is lost to the environment through the collector and plumbing. If such a system is to be used in climates where the temperature falls below freezing, complexity is added resulting in lower system efficiencies. If, rather than pumping water to the roof to absorb solar energy, the solar radiation is “piped” into the hot water store, a solar water heating system may be much less complex and potentially more efficient. HSL technology can be used to collect solar radiation and transport it through optical fibers into a hot water store. Since the water remains in the tank, it is not exposed to freezing temperatures and heat loss through plumbing. The efficiency of the system would not be dependent on the outside temperature or the temperature of the water as traditional systems are, but solely on the efficiency in which solar radiation is transferred into the water. This paper will outline the major advantages of using HSL technology for solar water heating over traditional systems. The approximate efficiencies of a flat-plate collector, 2-axis solar tracking collector, and a system using HSL technology are compared using F-Chart for locations in the Southwestern and Northeastern United States. It is shown that improvements in efficiency are obtained using HSL technology if the system is capable of collecting and transferring the visible and infrared spectrum of solar radiation.

This content is only available via PDF.
You do not currently have access to this content.