The DLR Solar Furnace in Cologne is a facility that concentrates direct solar radiation with a concentration factor up to 5200. The energy of such concentrated solar radiation can be used to cause thermal or photochemical effects in the irradiated materials. For astrophysical and mineralogical applications a new vacuum chamber with a specific design and instrumentation for solar experiments was developed and installed at the DLR Solar Furnace. This facility enables testing of small samples under high vacuum conditions. Within a project dealing with chondrule formation (chondrules are parts of meteorites) solid samples were melted by concentrated solar radiation. The aim was to investigate and simulate a fast heating-up (“flash heating”) of the samples and a subsequent solidification by controlled cooling. Another experiment series investigates thermal reduction of samples of metal oxide and of lunar regolith simulant. The goal of this activity is to produce oxygen and eventually also pure metals by pyrolysis. The in-situ production of oxygen and metals on the moon is a key technology for future lunar bases or manned Mars missions. The first solar furnace tests within both projects showed the performance of the new vacuum chamber and the feasibility of the different investigation paths.

This content is only available via PDF.
You do not currently have access to this content.