Free span assessment in watercourse crossings for the on-shore pipeline industry has become a more and more important part of pipeline integrity practice. One reason is that it has become increasingly well known that the dominant cause of pipeline failures in watercourse crossings is fatigue failure due to vortex induced vibrations at pipeline free spans. Recognition of this is now being identified in industry recommended practices and owners are incorporating this type of assessment into their pipeline integrity management practice.

On shore pipelines are not designed with an allowable free span as is the practice with off-shore pipelines, but are buried. Design codes specify minimum depths of cover when constructed and indicate that pipelines should be maintained so that no excessive loads occur. In the past the no excessive loads requirement has been interpreted that the pipeline must remained buried. As experience from the off-shore environment and increasingly from experience on-shore has shown that most exposed and/or free spans do not fail.

Due to various river erosion mechanisms; scour, bank erosion or avulsion, previously buried pipelines do develop free spans. Some of the free spans fail and release products directly into the watercourse. Failures, particularly for liquid products, are very expensive due to the economic loss, repair costs and environment clean-up of the watercourse and its banks. Similarly, costs associated with pipeline replacement for free spanning pipelines or repair of pipelines that might develop free spans are relatively high. It is important to develop an understanding of the probability of the pipeline failing due to a free span, or put another way, determine which free span is a threat to integrity.

This paper discusses some of the challenges with assessing free spans in watercourse crossings as part of integrity programs and highlights experiences in assessing this threat to integrity. The objective of this paper is to discuss some of the key uncertainties related to the management of the threat due to free spans. These uncertainties are due to the reliability of information about the free span, water velocity and condition of the pipelines.

This content is only available via PDF.
You do not currently have access to this content.