For pipelines in the oil, gas, and mining industry, movement of pipelines is one of the main integrity hazards. This movement in most cases is caused by landslides instigated by heavy rain, earthquakes or volcanic activities. If the pipeline movement remains undetected at an early stage, it can lead to the need for costly repairs to prevent, remove, or repair potential or actual damage. Moreover, if the movements stay undetected for too long, these lines may fail and lead to catastrophic events.

This paper will illustrate what a fast and cost-effective solution to avoid these threats at an early stage looks like and how it works. It will explain the process and demonstrate the full power of this technology on the basis of a case study.

The standard solution for pipelines without a permanent position monitoring system at the time of installation includes the use of intelligent tools that are able to detect even the slightest changes in the trajectory. These inspection tools are quite expensive to run, especially when multiple screening runs are required throughout a year, e.g. before and after the rainy season or after a seismic event. Other monitoring solutions are either limited to only a specific area where the movement has already been detected at an earlier stage or lack the precision required to serve as an early warning system, such as LIDAR or satellite image comparison.

Over the years, ROSEN has developed a technology that can bridge the gap between frequent measurements and cost-effective service. It is based on an electronic gyroscope that is commonly used in Inline Inspection tools but can also be installed in readily available cleaning tools. When first run in a pipeline, it records the whole pipeline trajectory, leaving no segment undocumented. The next step is to compare these recorded pipeline routing measurements with already existing trajectory baseline data, recorded earlier by any ILI tool with an optical gyro or similar. This comparison will reveal any deviation between both trajectories and precisely determine any pipeline movement. A case study will demonstrate how the comparison is achieved.

When performing repetitive inspections, this screening comparison enables the operators to detect the onset of movements and monitor the progress of any known pipeline movement. It allows them to distinguish between stable areas from dynamic ground movements and keeps close track of changes in the pipe course. Through regular repetitions, any further development of the movement is tracked, and appropriate reactive measures can be scheduled in a timely manner. This new service provides a cost-effective and powerful early warning tool for geological pipeline integrity threats that can lead to loss of integrity, the asset, or — worst-case scenario — loss of life or environmental contamination, while at the same time, it reduces the necessity of pipeline intervention that will affect production.

This content is only available via PDF.
You do not currently have access to this content.