By their nature, Pipeline Transmission Systems are exposed to threats from various sources. These include the threat of Weather and Outside Forces (WOF), this threat has a destructive potential associated with landslides, creeping, soil erosion and scouring in rivers, etc. Their hazards increase when pipelines are installed in areas with a tropical climate, having rains of a magnitude that often tend to destabilize the soil surrounding the pipelines, affecting its integrity and therefore the safety of people and the environment.

The identification and monitoring of geotechnical risk areas, using inertial data, is based on the reprocessing and analysis of the raw data provided by in line inspection tools. The result of this analysis, after the noise reduction process using a variety of filters at different intervals, reveals areas where there is possible deformation. These zones are transformed into indications that are studied by an analyst, correlating other data sources such as terrain topography, soil characteristics, hydrology, ground motion records, ILI records (caliper records, MFL records, etc.), as-built data, stress concentrators, etc. The analyst determines if they are pipeline deformations due to soil movement or if the indication is caused by another source such as the noise caused by the electronic components of the tool, the operating conditions during the inspection, the filtering process, etc.

Areas with signs of strain are evaluated to determine the tensional state in critical conditions for each specific case. If the stresses are close to the limits, a field inspection and an action plan are needed for each case. In certain cases, according to the experts, field indications are evaluated to verify the data obtained by the ILI Tool and to simultaneously give feedback to the noise reduction process.

The execution of the calculation process allows the monitoring and identification of geotechnical risk areas, providing better control over parameters such as limits for reporting indications, control of discrimination and selection criteria, detailed assessment of each indication, etc. Finally, this process provides the opportunity to obtain additional information from the ILI inspection such as unregistered bending, misaligned welds, areas with excess root welding, etc.

This content is only available via PDF.
You do not currently have access to this content.