In-line inspection by inertial mapping techniques is an essential tool for pipeline operators in areas susceptible to geohazards. The detection of previously unknown movements can provide early warning of the presence of a hazard. Positional change and the nature of the loading process can be monitored using the results of multiple inspections over time. Structural modelling is required to fully evaluate the integrity of the pipeline and whether a failure condition is being approached. Finite element techniques can be used, including the effects of soil-pipe interaction, axial forces and operational loads. This enables the prediction of future performance, based on trends from multiple inspections, so that mitigation or intervention methods are efficiently designed and scheduled.

This paper considers some key aspects of the analysis process. The use of ILI mapping data to detect small movements below the tool measurement tolerance is examined. The importance of structural analysis is demonstrated by consideration of the axial force component. The inherent variability of the soil surrounding the pipe and its influence on the load transfer effects is illustrated, together with the issues of significant interaction within the transition zones of landslides or faults.

This content is only available via PDF.
You do not currently have access to this content.