Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: stream
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IPC2002, 4th International Pipeline Conference, Parts A and B, 1283-1289, September 29–October 3, 2002
Paper No: IPC2002-27103
... database hazard risk pipeline geotechnical hydrotechnical landslide GIS river stream Trans Mountain Pipe Line Company Ltd. (TMPL) owns and operates an 1146 km NPS 24 low vapor pressure petroleum products pipeline between Edmonton, Alberta and Burnaby, British Columbia. In 1998...
Abstract
Trans Mountain Pipe Line Company Ltd. (TMPL) owns and operates an 1146 km NPS 24 low vapor pressure petroleum products pipeline between Edmonton, Alberta and Burnaby, British Columbia. In 1998 TMPL retained BGC Engineering Inc. (BGC) to start a three-phase geotechnical and hydrotechnical hazard assessment of the right of way (ROW) from Hinton, Alberta to Kamloops, British Columbia. As part of this work GroundControl was asked to develop an electronic database with which to capture the information generated by BGC during the hazard assessment work. This paper describes the development and evolution of the database application that accompanied the study to quantitatively assess and prioritize the geotechnical and hydrotechnical hazard potential along the pipeline. This paper describes how the database provides TMPL employees across British Columbia and Alberta access to the current results of the hazard assessment plus supporting information such as multi-temporal images and internal and 3rd party reports about the pipeline. The purpose of the database and the unique architecture and functionality that accommodates ongoing monitoring and inspections of slopes and stream crossings is provided. Database security, access, and information sharing unique to TMPL are also described. Benefits and costs of the application plus technical and business challenges overcome by TMPL, BGC, and GroundControl are discussed. Recommendations from TMPL and GroundControl for similar information management initiatives are provided and future work is described. This paper is targeted to pipeline managers who are looking for economical, practical, and innovative information management solutions for managing their natural hazards.
Proceedings Papers
Proc. ASME. IPC2004, 2004 International Pipeline Conference, Volumes 1, 2, and 3, 2597-2602, October 4–8, 2004
Paper No: IPC2004-0092
... database hazard vulnerability risk pipeline geotechnical hydrotechnical landslide river stream Terasen Pipelines (Terasen) owns and operates an 1146 km low vapour pressure petroleum products pipeline between Edmonton, Alberta and Burnaby, British Columbia. Its right-of-way passes...
Abstract
Terasen Pipelines (Terasen) owns and operates an 1146 km low vapour pressure petroleum products pipeline between Edmonton, Alberta and Burnaby, British Columbia. Its right-of-way passes through some of the most geotechnically, hydrotechnically, and environmentally challenging terrain in Western Canada. This paper describes the latest advancement of a natural hazards and risk management database application that has supported a 6-year hazard management program to quantitatively assess and prioritize the geotechnical and hydrotechnical risk along the pipeline. This database was first reported at IPC 2002 in a paper entitled “Natural hazard database application — A tool for pipeline decision makers” [1]. This second paper describes the advancements since then, including the addition of the Hydrotechnical Field Inspection Module (FIM), an add-on tool that allows field inspection observations to adjust hazard and vulnerability. This paper discusses the challenges in building a methodology that is practical enough for field maintenance personnel to use yet sufficiently comprehensive to accurately describe improving or worsening hydrotechnical hazard conditions. Functionality to enter hazard inspection data, review inspection results in the office, and authorize changes to the hydrotechnical hazard probabilities are described in the paper and demonstrated in the conference presentation. The relationship between revised hazard, vulnerability, risk, and response thresholds (such as inspection frequency, monitoring, site surveys, or mitigation) are demonstrated using a river crossing with a dynamic hazard history. As in previous years, this paper is targeted to pipeline managers who are seeking a systematic hazard and risk management approach for their natural hazards.