Experiments have been carried out in a 36-m long, 10-cm diameter multiphase horizontal flow system to examine the effect of drag reducing agents (DRA) on average pressure drop, maximum pressure drop and slug characteristics with the presence of water. Superficial liquid velocities between 0.5 and 1.5 m/s and superficial gas velocities between 2 and 14 m/s were investigated. Oil with a viscosity of 2.5 cP at 25 °C was used for the study. ASTM salt was used as a substitute for seawater and carbon dioxide was used as the gas. Water cut was 50%. Temperature and pressure were maintained at 25 °C and 0.13 MPa. The DRA concentrations of 0, 20 and 50 ppm were used in this study.

The results show that the average pressure drop in both slug flow and annular flow decreased significantly with addition of DRA. Under special conditions, it was found that DRA changed the flow pattern from pseudo-slug to annular resulting in a 74% reduction in pressure drop. For annular flow, the average pressure drop reduction of up to 53% was achieved. The maximum pressure drop across the slug also decreased with the presence of DRA. The average and maximum pressure drops at a DRA concentration of 50 ppm were more effective than 20 ppm for all cases.

The slug frequency and effective height of the liquid film decreased significantly when DRA concentrations were added. This led to a decrease in the average pressure drop. However, the slug translational velocity did not change significantly with addition of DRA.

This content is only available via PDF.