Designers of ultrasonic meter stations with headers do not have any experimental data which can help to determine proper location of the multipath ultrasonic meter within the meter run. The results of meter tests are limited to such configurations as a single 90° elbows and two elbows out of plane. Because of the variety of header layouts used in practice any experimental information related to this piping configuration will be of limited use in the design process.

The proposed approach is based on the application of Computational Fluid Dynamics (CFD) methods to the evaluation of header effects on ultrasonic flow meter using a commercial CFD code combined with a numerical model of the ultrasonic meter.

The numerical simulation of the flow field in the header and meter runs and subsequent integration of the obtained velocity field in a numerical model of multipath ultrasonic meter were used to determine the optimal meter position. This approach was validated against available experimental data on the ultrasonic meter performance downstream of single and double elbow. The comparison of simulations and test data has shown very good agreement of trends exhibited by the meter. The trends were replicated by the simulator within approximately 1% for X/D ≥5 and within 0.5% for X/D ≥9.

This content is only available via PDF.