The study of rapid ductile crack propagation and crack arrest is a central point if one wants to reach a higher safety level in pipelines. Correlations between Charpy tests and full scale burst tests proved to be unsuccessful in predicting pipe burst for recent high strength steels. This paper presents an experiment which allows to test large SENT specimens under dynamic loading, and to characterize steel resistance against rapid ductile crack propagation by a classical energetic parameter, called the crack propagation energy, R, proposed by Turner. The R parameter proved to be characteristic of the rapid crack propagation in the material, for a given specimen and loading configuration. Failure of the specimen under dynamic conditions occurs by shearing fracture which is the same as in a full scale burst test. An example is given for an X65 ferritic-pearlitic steel loaded under static and dynamic conditions. A fracture mode transition is shown following the loading rate. From a metallurgical point of view, shearing fracture occurs by nucleation, growth and coalescence of voids, as for classical ductile fracture.

This content is only available via PDF.