Abstract
There are several challenges associated with existing rupture detection systems such as their inability to accurately detect during transient (such as pump dynamics) conditions, delayed responses and their inability to transfer models to different pipeline configurations easily. To address these challenges, we employ multiple Artificial Intelligence (AI) classifiers that rely on pattern recognitions instead of traditional operator-set thresholds. AI techniques, consisting of two-dimensional (2D) Convolutional Neural Networks (CNN) and Adaptive Neuro Fuzzy Interface Systems (ANFIS), are used to mimic processes performed by operators during a rupture event. This includes both visualization (using CNN) and rule-based decision making (using ANFIS). The system provides a level of reasoning to an operator through the use of the rule-based AI system. Pump station sensor data is non-dimensionalized prior to AI processing, enabling application to pipeline configurations outside of the training data set. AI algorithms undergo testing and training using two data sets: laboratory-collected data that mimics transient pump-station operations and real operator data that includes Real Time Transient Model (RTTM) simulated ruptures. The use of non-dimensional sensor data enables the system to detect ruptures from pipeline data not used in the training process.