Abstract
The present paper deals with the subject of failure of deep-sea pipelines that have thickness metal-loss areas caused by corrosion and are subjected to high external hydrostatic pressure. An extensive research program was launched to observe failure modes, to examine existing and to develop prediction collapse equations, and to determine their accuracy. The program uses finite element modeling and external hydrostatic collapse tests of full-scale specimens. This paper presents and discusses the results of the first 20 collapse tests, which were performed in a new 103 MPa (15 ksi) hyperbaric chamber (760 mm internal diameter and 7200 mm length). The test results obtained with full scale specimens (324 mm external diameter and 23 mm thickness) made of low carbon steel API 5L X60 with external machined metal loss defects are used to verify the level of accuracy and conservatism of four analytical simple equations used to predict collapse of pipes with corrosion subjected to high external pressure.