Abstract

Permafrost thawing caused by the hot crude pipeline is a major threat to the safe operation of buried pipelines in permafrost zone. In this paper, the process of thawing and consolidation of frozen soil is considered, and a three-dimensional (3D) finite element model of buried pipelines in permafrost zone is established using ABAQUS. The calculation of thaw settlement displacement of frozen soil based on moisture-heat-stress coupled was carried out, and the deformation and stress of buried pipelines were analyzed. The effects of ground temperature, oil temperature, thermal conductivity of insulation material and soil distribution along the pipeline on the vertical displacement and longitudinal stress of buried pipelines in frozen soil were studied. Research results show that in thaw-unstable soil, the vertical displacement and stress of the pipeline increase significantly with the increase of the average ground temperature, and change on ground temperature amplitude has a little effect on the vertical displacement and longitudinal stress of the pipeline in thaw settlement zone. It is 1/3 of the vertical displacement of the pipeline without a heat insulating layer. When the thermal conductivity of the insulation material is less than 0.4 W/m °C, the vertical displacement of the pipeline in the thawing zone can be further reduced by reducing the thermal conductivity of the insulation material. When clay and sand appear alternately along the pipeline, the vertical displacement and longitudinal stress of the pipeline can be reduced by reducing the length of clay section. This study has certain reference value for optimizing the design parameters of buried pipelines in permafrost zone and reducing the impact of differential thaw settlement of frozen soils on the safe operation of pipelines.

This content is only available via PDF.
You do not currently have access to this content.