Abstract

Nova Transportadora do Sudeste (NTS) own and operate a gas transmission system in Brazil constructed in 1996. One of the confirmed primary integrity threats to this system is axial stress corrosion cracking. The pipelines vary in diameter, weld type, manufacturer and age. One of the pipelines failed in 2015 due to an axial stress corrosion crack. Since the failure, NTS have executed an intense inspection campaign to detect and size axial cracking within their network.

The 2015 failure occurred on a field bend. The inspection campaign and following dig campaign has confirmed that cracking (both axial and circumferential) within field bends is the primary integrity threat. Brazil has a challenging terrain and approximately 40% of joints within the network were subject to cold field bending. The influences of the pipeline geometry within these areas have resulted in localised elevated stresses where the axial stress corrosion cracking colonies are initiating and growing. To date, no cracking (axial or circumferential) has been verified within their straight pipe joints.

NTS initially took a conservative baseline assessment approach using API 579 Part 9, due to the limited information regarding the pipe material and complex stress state. In addition to the hoop stress from internal pressure, the baseline assessment also considered weld residual stress and bending stress due to ovalization to determine immediate and future integrity.

An intensive dig campaign is underway following a crack detection in-line inspection campaign using electromagnetic acoustic transducer technology. A large number of deep cracks were reported by the in-line inspection system, these were verified to be deep and repaired with a type B sleeve. However, at one site an entire joint was removed for further analysis, to investigate the crack morphology, confirm material properties and refine the predictive failure pressure modelling.

This paper outlines how NTS have combined a burst test, mechanical testing, FEA modelling, fractography and metallographic examination to further understand the feature morphology and stresses within these areas and how they have been able to reduce conservatism from their baseline assessment with confidence and adopt a plastic collapse approach to accurately predict failure.

This content is only available via PDF.
You do not currently have access to this content.