Abstract

Chemical cleaning is used in gas pipelines to remove debris that was resistant to mechanical cleaning. The cleaner is a liquid mixture of a hydrocarbon-based solvent and a surfactant. It is transported down the pipeline either batched between two cleaning tools or pushed by a single tool.

During a chemical cleaning run, liquid will leak into any side branch it passes. Consequently, gas quality problems may arise when the pipeline returns to regular operations as the leaked liquid hydrocarbons evaporate into the gas stream. Furthermore, operational problems such as flooded separators can occur if a large volume of liquid is lost.

Currently, there is no understanding of what factors influence the liquid’s leak rate into side branches. This paper aspires to address this knowledge gap. A water flow loop was set up to investigate the effect on leak rate of mainline pipe size, side branch pipe size, side branch length, and mainline liquid velocity. The leak rate is found to increase with the side branch pipe size, while remaining unaffected by the mainline pipe size and side branch length. At mainline velocities below the critical velocity, gravitational effects such as the downstream back pressure significantly affect the leak rate. At mainline velocities above the critical velocity these effects disappear, and the leak rate decreases as the mainline liquid velocity increases.

This content is only available via PDF.
You do not currently have access to this content.