Abstract
The threat of pressure cycle induced fatigue cracking of flaws associated with the longitudinal seam weld continues to be a primary concern for pipeline operators. Cyclic pressure loading can cause initial manufacturing flaws in a seam weld to sharpen and grow over time. While this behavior is most prevalent in pre-1979 electric resistance welds (ERW) and electric flash welds (EFW), historical data also shows that submerged arc welds (SAW) have been observed to develop cracks at the toe of the weld, and those cracks have exhibited fatigue growth from transit fatigue, operating pressure cycles, or both.
When managing a large pipeline network, it is important to understand which pipelines exhibit higher priority with respect to seam weld fatigue cracking. While there are industry-accepted methodologies used to prioritize pipelines with respect to seam weld integrity (TTO-5 [1] and API RP 1176 [2] being the most well-known), these methodologies can be improved upon when specifically considering fatigue.
Saudi Aramco and Quest Integrity developed a detailed methodology to determine a prioritization for a group of pipelines specifically with respect to seam weld fatigue cracking. This improved methodology was specially tailored to consider additional data available in Saudi Aramco’s records to rank the likelihood for a fatigue failure to occur. This initial prioritization will be used to implement a more rigorous program to manage their assets. Additional data gathered in subsequent assessments can be included to refine the prioritization.
The primary metrics used to determine the prioritization are pressure cycle aggressiveness, predicted remaining life with respect to recent hydrostatic testing, and the API 1176 Annex B prioritization classification.