Coating and cathodic protection degradation can result in the generation of several types of flaws in pipelines. With the increasing number of aging pipelines, such defects can constitute serious concerns for pipeline integrity. When flaws are detected in pipelines, it is extremely important to have an accurate assessment of the associated failure pressure, which would inform the appropriate remediation decision of repairing or replacing the defected pipelines in a timely manner. Cracks-in-corrosion (CIC) represent a class of defect, for which there are no agreed upon method of assessment, with no existing analytical or numerical models to predict their failure pressures. This paper aims to create a set of validated numerical finite element analysis models that are suitable for accurately predicting the failure pressure of 3D cracks-in-corrosion defects using the eXtended Finite Element Method (XFEM) technique. The XFEM for this study was performed using the commercially available software package, ABAQUS Version 6.19. Five burst tests of API 5L X60 specimens with different defect depths (varying from 52% to 66%) that are available in the literature were used to calibrate the XFEM damage parameters (the maximum principal strain and the fracture energy). These parameters were varied until a reasonable match between the numerical results and the experimental measurements was achieved. Symmetry was used to reduce the computation time. A longitudinally oriented CIC defect was placed at the exterior of the pipe. The profile of the corroded area was assumed to be semi-elliptical. The pressure was monotonically increased in the XFEM model until the crack or damage reached the inner surface of the pipe. The results showed that the extended finite element predictions were in good agreement with the experimental data, with an average error of 5.87%, which was less conservative than the reported finite element method predictions with an average error of 17.4%. Six more CIC models with the same pipe dimension but different crack depths were constructed, in order to investigate the relationship between crack depth and the failure pressure. It was found that the failure pressure decreased with increasing crack depth; when the crack depth exceeded 75% of the total defect depth, the CIC defect could be treated as crack-only defects, since the failure pressure for the CIC model approaches that for the crack-only model for ratios of the crack depth to the total defect depth of 0.75 and 1. The versatility of several existing analytical methods (RSTRENG, LPC and CorLAS) in predicting the failure pressure was also discussed. For the corrosion-only defects, the LPC method predicted the closest failure pressure to that obtained using XFEM (3.5% difference). CorLAS method provided accurate results for crack-only defects with 7% difference. The extended finite element method (XFEM) was found to be very effective in predicting the failure pressure. In addition, compared to the traditional Finite Element Method (FEM) which requires extremely fine meshes and is impractical in modelling a moving crack, the XFEM is computationally efficient while providing accurate predictions.

This content is only available via PDF.
You do not currently have access to this content.