A decade ago, the pipeline industry was actively exploring the use of high strength steels (X80 and greater) for long distance, large diameter pipelines operating at high pressures. However in recent years the industry has adopted a more conservative approach preferring to utilize well established X70 grade pipe in heavier wall thicknesses to accommodate the demand for increased operating pressures.

In order to meet this demand, EVRAZ has undertaken a substantial upgrade of both its steelmaking and helical pipemaking facilities. The EVRAZ process is relatively unique employing electric arc furnace (EAF) steelmaking to melt scrap, coupled with Steckel mill rolling for the production of coil which is fed into helical DSAW pipe mills for the production of large diameter line pipe in lengths up to 80 feet. Prior to the upgrade production had been limited to a maximum finished wall thickness of ∼17 mm. The upgrades have included installation of vacuum de-gassing to reduce hydrogen and nitrogen levels, upgrading the caster to improve cast steel quality and allow production of thicker (250 mm) slabs, upgrades to the power trains on the mill stands to achieve greater rolling reductions, replacement of the laminar flow cooling system after rolling and installation of a downcoiler capable of coiling 25.4 mm X70 material. As well a new helical DSAW mill has been installed which is capable of producing large diameter pipe in thicknesses up to 25.4 mm.

The installation of the equipment has provided both opportunities and challenges. Specific initiatives have sought to produce X70 line pipe in thicknesses up to 25.4 mm, improve low temperature toughness and expand the range of sour service grades available. This paper will focus on alloy design and rolling strategies to achieve high strength coupled with low temperature toughness. The role of improved centerline segregation control will be examined. The use of scrap as a feedstock to the EAF process results in relatively high nitrogen contents compared to blast furnace (BOF) operations. While nitrogen can be reduced to some extent by vacuum de-gassing, rolling practices must be designed to accommodate nitrogen levels of 60 ppm. Greater slab thickness allows greater total reduction, but heat removal considerations must be addressed in optimization of rolling schedules to achieve suitable microstructures to achieve both strength and toughness. This optimization requires definition of the reductions to be accomplished during roughing (recrystallization rolling to achieve a fine uniform austenite grain size) and finishing (pancaking to produce heavily deformed austenite) and specification of cooling rates and coiling temperatures subsequent to rolling to obtain suitable transformation microstructures. The successful process development will be discussed.

This content is only available via PDF.
You do not currently have access to this content.