In the oil industry liquid pipelines are very important for the transport of liquids, particularly in long offshore pipelines. The operation of these oil pipelines is susceptible to the occurrence of leaks in the system. Localizing a leak in a very long oil pipeline is an important piece of information that needs to be obtained before mitigating actions can be taken. These pipelines are usually subject to the temperature gradients that exist in the bottom of the ocean, and the resulting heat transfer process may lead to wax formation and deposition. The single-phase flow that occurs in this type of offshore pipeline that presents one leak point and suffers the effects of an external temperature gradient is numerically simulated in this paper. We consider a one-dimensional mathematical model that includes conservation equations of mass, momentum and energy, and its associated numerical method to calculate the transient liquid flow inside the pipeline. We are particularly interested in testing a leak localization model based upon the intersection of the hydraulic grade lines emanating from the pipeline ends under the influence of a non-zero temperature distribution. This paper proposes to compare the results for a non-isothermal flow with the corresponding isothermal flow to study the influence of the temperature distribution upon the leak localization strategy. The flow that develops along the entire pipeline, upstream and downstream of the leak, strongly affects the pressure gradient and has a significant influence on the location of the leak. Our numerical simulations show results that allow the model sensitivity to be studied by changing the leak magnitude, for a given leak position. From this analysis, we may observe how these parameters affect the pressure gradients along the pipeline that develop upstream and downstream of the leak and the model’s ability to predict the leak location.

This content is only available via PDF.
You do not currently have access to this content.