Stress Corrosion Cracking (SCC) is a time dependent mechanism. Three conditions are required at the same location for the formation of SCC namely, susceptible material, susceptible environment and sufficient stress. Pipe age, operating stress level and coating type are significant parameters in determining the susceptibility to near-neutral pH SCC; whereas, additional parameters such as operating temperature and distance from compressor station are considered for high pH SCC. Environmental conditions such as soil type, topography and drainage have also shown correlation to SCC susceptibility. Several integrity assessment methods can be used to identify SCC on pipeline including hydrostatic testing, in-line inspection (ILI), and direct assessment (DA). Because the occurrence of SCC is a complex phenomenon and it depends on many parameters, it is important to develop a risk assessment model that can systematically incorporate all relevant evidences of SCC in a sensible way. This paper presents a robust risk assessment model for SCC, which uses evidence from failure histories, observation from assessments (i.e., digs, pressure tests, and ILIs), and mechanistic understanding of SCC (i.e. susceptible coating, pipe material, stress level, soil properties, etc.). This risk model is transparent and updateable, which allows incorporation of new scientific learnings and findings of SCC.

This content is only available via PDF.
You do not currently have access to this content.