Reliability-based corrosion assessment criteria were developed for onshore natural gas and low vapor pressure (LVP) pipelines as part of a joint industry project. The criteria are based on the limit states design (LSD) approach and are designed to achieve consistent safety levels for a broad range of pipeline designs and corrosion conditions.

The assessment criteria were developed for two corrosion limit states categories: ultimate limit state, representing large leaks and ruptures; and leakage limit state, representing small leaks. For the ultimate limit state, a safety class system is used to characterize pipelines based on the anticipated severity of failure consequences as determined by pressure, diameter, product, population density and environmental sensitivity. Since the leakage limit state does not result in significant safety or environmental consequences, a single reliability target, applicable for all pipelines at all locations is used.

The assessment criteria formulations are characterized by three elements: the equations used to calculate the characteristic demand (i.e. operating pressure) and capacity (i.e. burst pressure resistance at a corrosion feature); the characteristic values of the key input parameters for these formulas (such as diameter, pressure and feature depth); and the safety factors defining the characteristic demand as a ratio of characteristic capacity. The process used to calibrate safety factors and characteristic input parameter values that meet the desired reliability levels is described, and an assessment of the accuracy and consistency of the resulting checks in meeting the reliability targets is included.

The assessment criteria include two methods of application: feature-based and section-based. The feature-based method divides the allowable failure probability equally between all features. It is simple to use, but conservative in nature. It is suitable for pipelines with a small number of corrosion features. The section-based method considers the failure probability of the corrosion features in a pipeline section as a group, and ensures that the total group failure probability is below the allowable threshold for the section. This method produces less conservative results than the feature-based method, but it requires more detailed calculations. It is suitable for all pipelines, and is particularly useful for those with a large number of features. The practical implications of the application of these criteria are described in the companion paper IPC2018-78608 Implementation of Reliability-based Criteria for Corrosion Assessment.

This content is only available via PDF.
You do not currently have access to this content.