Spirally welded pipelines can make up significant portions of operator transmission systems, and may contain manufacturing anomalies that are susceptible to fatigue growth. Modifications to inputs of crack assessment models, such as CorLAS®, are required to account for the angle these cracks make with respect to the longitudinal pipe axis, given that these crack assessment models were developed for longitudinally orientated cracks. Two such modifications were investigated and are discussed in this paper.

One approach considered the normal stress component perpendicular to the angled crack, for which a stress transformation calculator was developed. Another approach, adapted from API 579 and BS7910 standards, used an effective crack length calculated as the longitudinal projection of the full length of an angled crack.

Failure pressures calculated using these approaches were compared to validated finite element (FE) results. For both modifications, the pressure capacity increased for angled cracks versus longitudinal cracks. The transformed normal stress approach resulted in non-conservative failure pressure predictions with respect to the FE models, whereas the modified crack length approach was conservative.

Additionally, the extended finite element method (XFEM) was used to investigate the propagation behavior of angled cracks. It was found that the general tendency was for propagation parallel to the longitudinal pipe axis; however, when considering weld residual stresses, the crack propagation would be directed toward the direction of the spiral seam.

This content is only available via PDF.
You do not currently have access to this content.