This article presents a complete set of calculations (referred to as Model) PG&E developed to monitor, assess and approve strength tests on insitu (pipelines currently in service) gas transmission pipelines. How the Model is used in the field, 2017 test results, and process improvements that resulted from the implementation of the model are also discussed.

In compliance with CPUC directives, the Code of Federal Regulations[1] and PG&E’s internal standards, PGE has performed strength tests on approximately 1,100 miles of insitu pipelines from 2011 through 2017. The model was specifically designed to assess the strength test of a closed section of gas pipeline for both leaks and ruptures.

The model was originally designed for strength tests using water as the test medium and updated to accommodate nitrogen as a test medium. A future enhancement will be to incorporate a blend of Nitrogen and Helium as the test medium. The model plots the pressure-temperature and pressure-volume curves over the test duration (field test measurements) and compares them to the theoretically calculated curves. The curves are used to determine if the change in pressure is due to temperature influence or leakage. When water is the test medium, the model calculates the net corrected medium volume change from start to end of the static test period. When nitrogen is the test medium, the model calculates and analyzes net mass change of the medium by considering nitrogen under both the real gas state and the ideal gas state.

By calculating restrained (buried) pipeline section and unrestrained (exposed) pipeline section separately, the model gains more accuracy. Accurate temperature measurements play a critical role in the model.

The model makes it possible for engineers to monitor, analyze and direct strength tests with real-time test data. The model is also used to evaluate the pipeline fill condition on the day prior to the actual test, which resulted in fewer test restarts due to incomplete fill or temperature stabilization issues. An additional benefit is the tests were typically completed earlier in the day. The model is utilized on all PG&E insitu pipeline strength projects today. Authors also provide improvement suggestions of this model in future application.

This content is only available via PDF.
You do not currently have access to this content.