This paper describes a novel technique for the detection of cracks in pipelines. The proposed in-line inspection technique has the ability to detect crack features at random angles in the pipeline, such as axial, circumferential, and any angle in between. This ability is novel to the current ILI technology offering and will also add value by detecting cracks in deformed pipes (i.e. in dents), and cracks associated with the girth weld (mid weld cracks, rapid cooling cracks and cracks parallel to the weld). Furthermore, the technology is suitable for detection of cracks in spiral welded pipes, both parallel to the spiral weld as well as perpendicular to the weld. Integrity issues around most features described above are not addressed with ILI tools, often forcing operators to perform hydrostatic tests to ensure pipeline safety.

The technology described here is based on the use of wideband ultrasound inline inspection tools that are already in operation. They are designed for the inspection of structures operating in challenging environments such as offshore pipelines. Adjustments to the front-end analog system and data collection from a grid of transducers allow the tools to detect cracks in any orientation in the line. Description of changes to the test set-up are presented as well as the theoretical background behind crack detection.

Historical development of the technology will be presented, such as early laboratory testing and proof of concept. The proof of concept data will be compared to the theoretical predictions. A detailed set of results are presented. These are from tests that were performed on samples sourced from North America and Europe which contain SCC features. Results from ongoing testing will be presented, which involved large-scale testing on SCC features in gas-filled pipe spools.

This content is only available via PDF.
You do not currently have access to this content.