Two kinds of industry trial X90 pipeline steel which had different chemical composition were chosen as experimental materials, and the grain coarsening, microstructure evolution characteristics and the variation rules of low-temperature impact toughness in weld CGHAZ of this two steel under different welding heat input were studied by physical thermal simulation technology, SEM, optical microscope and Charpy impact test. The results show that microstructure in weld CGHAZ of 1# steel is mainly bainite ferrite (BF) and most of the M/A constituents are blocky or short rod-like; the grains of 2# steel are coarse and there is much granular bainite (GB), meanwhile M/A constituents become coarse and their morphology is changing from block to elongated laths; alloy content of X90 pipeline steel under different welding heat input has great effect on the grain size of original austenite, and when heat input is lower than 2.0KJ/mm, Charpy impact toughness in CGHAZ of lower alloy content pipeline steel is good; as heat input increases, impact toughness in CGHAZ of 1# steel is on the rise, and it is high (between 260J and 300J) when heat input is between 2.0KJ/mm and 2.5KJ/mm and the scatter of impact energy is small; impact toughness of 2# steel decreases gradually and the impact energy has obvious variability.

This content is only available via PDF.
You do not currently have access to this content.