Pipelines transporting compressible hydrocarbons like methane or high-vapor-pressure liquids under supercritical conditions are uniquely susceptible to long-propagating failures in the event that initiation triggers this process. The unplanned release of hydrocarbons from such pipelines poses the risk for significant pollution and/or the horrific potential of explosion and a very large fire, depending on the transported product. Accordingly, the manufacturing procedure specification (MPS) developed to ensure the design requirements are met by the steel and pipe-making process is a critical element of the fracture control plan, whose broad purpose is to protect the environment and ensure public safety, and preserve the operator’s investment in the asset.

This paper considers steel specification to avoid long-propagating shear failures in advanced-design larger-diameter higher-pressure pipelines made of thinner-wall higher-grade steels. Assuming that the arrest requirements can be reliably predicted it remains to specify the steel design, and ensure fracture control can be affected through the MPS and manufacturing procedure qualification testing (MPQT). While standards exist for use in MPQTs to establish that the MPS requirements have been met, very often CVN specimens remain unbroken, while DWTT specimens exhibit features that are inconsistent with the historic response and assumptions that underlie many standards. In addition, sub-width specimens are often used, whereas there is no standardized means to scale those results consistent with the full-width response required by some standards. Finally, empirical models such as the Battelle two curve model (BTCM) widely used to predict required arrest resistance have their roots in sub-width specimens, yet their outcome is widely expressed in a full-size context.

This paper reviews results for sub-width specimens developed for steels in the era that the BTCM was calibrated to establish scaling rules to facilitate prediction in a full-size setting. Thereafter, issues associated with the use of sub-width specimens are reviewed and criteria are developed to scale results from such testing for use in the MPS, and MPQT, which is presented as a function of toughness. Finally, issues associated with the acceptance of data from unbroken CVN specimens are reviewed, as are known issues in the interpretation of DWTT fracture surfaces.

This content is only available via PDF.
You do not currently have access to this content.