Newly-developed high quality high frequency electric resistance welded (HFW) linepipes have recently been applied to offshore pipelines by using the reel-lay method and onshore in extremely low temperature environments because of their excellent low temperature weld toughness and cost effectiveness. In order to clarify the applicability of these HFW linepipes to seismic regions, a series of full-scale tests such as the bending test with internal pressure and the uniaxial compression test were conducted according to the seismic design code of the Japan Gas Association (JGA).
Based on these full-scale tests, the safety performance of high quality HFW linepipe when applied to seismic regions is discussed in comparison with the mechanical properties obtained in small-scale tests, such as the tensile and compression properties of the base material and weld seam, focusing especially on the compressive and tensile strain capacity of HFW linepipes from the viewpoints of full-scale performance and geometrical imperfections.
The results of the bending test under internal pressure and the uniaxial compression test without internal pressure complied with the JGA seismic design code for permanent ground deformation induced by lateral spreading and surface faults.
In addition, a full-pipe tension test was also conducted in order to investigate the tensile strain capacity of HFW linepipes for axial deformation.