One of the major issues in the pipeline industry is coating disbondment. A very large percentage of external corrosion and SCC is observed under disbonded coatings that shield Cathodic Protection (CP). This has been an ongoing issue with coated and cathodic protected pipelines since the initial use of these two protection methods. The various coating types and their typical failure scenarios, under various harsh environmental conditions, as well as their compatibility with cathodic protection when disbondment occurs, play a major role for recoating programs and selection of the coating type used for repairs and re-coating programs.
With the continued development and improvements of the “Electro-Magnetic Acoustic Transducer” (EMAT) in line inspection technology it is possible to locate disbonded coatings, without the need of exposing the pipeline. This way operators can assess the condition of the coatings applied to their pipeline systems at a comparable low cost. Inline inspection tools equipped with the “EMAT” technology are also capable of identifying the various coating types and coating conditions.1 The coating type identification process is not limited to coating types applied to whole joints. Field applied coatings covering the girth weld area or coating changes within a joint such as repairs can be identified as well. In the presented case study, the challenge was the identification of different coating types used as repairs or for re-coating procedures, within the 60 year history of the inspected pipeline system. At the beginning of the project the main coating types and obvious repairs were identified based on EMAT in line inspection data. In a combined effort, operator and in line inspection vendor compared the initially identified coating types with the known repair history of this pipeline system. Based on this shared combined information the coating type analysis could be finetuned and additional areas could be identified as repaired or re-coated.
The paper will outline different coating repair methods described by the operator and subsequently identified by the EMAT tool. This paper will also describe for each coating repair method the associated risks for the pipeline integrity.