Composite repair systems for pipelines are continuing to be used for increasingly difficult and complex applications which can have a high consequence of failure. In these instances, full-scale testing is typically pursued at a high-cost to the manufacturer or operator. Finite element analysis (FEA) modeling is a valuable tool that becomes especially attractive as a method to reduce the number of full-scale tests required. This is particularly true when considering the costs associated with recreating complex load and temperature conditions. In order for FEA to fill this role, it is necessary to validate the results through full-scale testing at the same loads and temperatures. By using these techniques, FEA and full-scale testing can be used in unison to efficiently produce accurate results and allow for the adjustment of critical parameters at a much lower cost than creating additional full-scale tests.

For this program, a series of finite element analysis (FEA) models were developed to evaluate the performance of composite materials used to reinforce corroded steel pipe in critical applications at elevated temperatures up to 120 °C. Two composite repair manufacturers participated in the study which was conducted on 12-inch × 0.375-inch Gr. X60 pipes with machined simulated corrosion defects that represented 50% wall loss. Load conditions consisted of axial compressive loads or bending moments to generate compressive stresses in the machined defect.

In the described evaluation program, FEA simulations were able to produce results which supported those found in full-scale validation testing. From the FEA models stresses and strains were extracted from the reinforced steel and composite materials. Good correlation was observed in comparing the results. Although limitations of the modeling included accurately capturing differential thermal strains introduced by the elevated test temperature, the results indicated that FEA models could be used as a cost-effective means for assessing composite repair systems in high-temperature applications.

This content is only available via PDF.
You do not currently have access to this content.