Pipelines installed on active slopes can be exposed to slope failure mechanisms. The soil movement can introduce substantial axial and bending strains on buried pipeline, and possibly damage. The techniques to predict pipeline displacements, loads, stress or strains are not well described in design standards or codes of practice. The practice of using finite element analysis of soil-pipe interaction has developed in recent years and is proving to be a useful tool in evaluating the pipeline behavior in response to slope movement.

A description of advanced pipe soil interaction modeling tools and their validation against full scale trails has been previously presented. This paper describes the ongoing work involved in a study investigating the mechanical behavior of buried pipelines interacting with active slope movement and evaluation of pipeline strain demand. Detailed pipe-soil interaction analyses were completed with a 3D continuum SPH (Smooth Particle Hydrodynamic) model to examine the pipeline behavior and evaluate the pipeline strain demand in relation to key parameters. This includes the effect of soil movement mechanism, pipeline geometry (D/t), material grade, pipeline burial depth and soil conditions and properties.

Sample results of the application of the validated 3D continuum modeling process will be presented. The strain demand determined from the analyses were compared with calculated CSA-Z662 strain limit design, local FEA analyses and BS 7910. These results are being used to develop generalized trends in pipeline response to slope movements.

This content is only available via PDF.
You do not currently have access to this content.