Rapid pressurization of liquid pipelines containing entrapped air may result in extreme overpressures. Both experimental and numerical studies have shown that the magnitude of the induced pressure has important sensitivities to many physical parameters even though the complex nature of the system’s transient responses has tended to obscure the physical mechanisms themselves. To provide insight and guidance to key design issues, this paper proposes an energy auditing approach to elucidate the physics of the transient events leading to the extreme pressure rise during pipe rapid pressurization events. The proposed approach is then utilized to provide physical understanding of the features of the flow and the system parameters affecting the maximum pressure rise during rapid pressurization of pipe system. Both rigid column and elastic numerical models are then employed to verify the results obtained from the proposed approach.

This content is only available via PDF.
You do not currently have access to this content.