A large Research and Development programme has been executed by National Grid to determine the feasibility of transporting carbon dioxide (CO2) by pipeline. Such pipelines would be required to form a transportation system to take the CO2 from its place of capture at an emitter’s site to a place of safe storage within a Carbon Capture and Storage (CCS) scheme. This programme received financial support from the European Union. As part of this programme, National Grid commissioned a series of experimental studies to investigate the behaviour of releases of CO2 mixtures in the gaseous and the liquid (or dense) phase. This has included simulating accidental releases in the form of punctures or ruptures of a buried pipeline and deliberate releases through different venting arrangements. This work is required, as CO2 has the potential to cause some harm to people if they are exposed to it for long enough at high concentrations. This paper gives an overview of the findings from this work and shows how the data has been used to help develop a number of the more pragmatic, predictive models for outflow and dispersion. This work complements the more theoretical studies carried out using state of the art advanced computational fluid dynamic models, employed by other UK based participants (University College London, University of Leeds, Kingston University and the University of Warwick) in the research programme.

This content is only available via PDF.
You do not currently have access to this content.