This work addresses a two-parameter description of crack-tip fields in bend and tensile fracture specimens incorporating the evolution of near-tip stresses following stable crack growth with increased values of the crack driving force as characterized by the J-integral. The primary objective of this study is to assess the coupled effects of geometry and ductile tearing on crack-tip constraint, as characterized by the J – Q theory, to correlate fracture behavior in circumferentially cracked reeled pipes and common fracture specimens. 3-D finite element computations including stationary and growth analyses were conducted for 3P SE(B) and clamped SE(T) specimens having different notch depth (a) to specimen width (W) ratio. Additional 3-D finite element analyses were also performed for circumferentially cracked pipes with a surface flaw having different crack depth (a) over pipe wall thickness (t) ratios. A cell methodology to model Mode I crack extension in ductile materials was utilized to describe the evolution of J with the evolving near-tip opening stresses. Laboratory testing of an API 5L X70 steel using deeply cracked C(T) specimens was used to measure the crack growth resistance curve for the material and to calibrate the cell parameter defined by the initial void fraction, f0. The present results provide further understanding of crack growth resistance measurements in pipeline steels using SE(T) and SE(B) specimens while eliminating some restrictions against the use of shallow cracked bend specimens in defect assessment procedures.
Skip Nav Destination
2014 10th International Pipeline Conference
September 29–October 3, 2014
Calgary, Alberta, Canada
Conference Sponsors:
- Pipeline Division
ISBN:
978-0-7918-4612-4
PROCEEDINGS PAPER
Correlation of Fracture Behavior in Circumferentially Cracked Pipes and Fracture Specimens Including Ductile Tearing
Diego F. B. Sarzosa,
Diego F. B. Sarzosa
University of São Paulo, São Paulo, Brazil
Search for other works by this author on:
Claudio Ruggieri
Claudio Ruggieri
University of São Paulo, São Paulo, Brazil
Search for other works by this author on:
Diego F. B. Sarzosa
University of São Paulo, São Paulo, Brazil
Claudio Ruggieri
University of São Paulo, São Paulo, Brazil
Paper No:
IPC2014-33042, V003T07A001; 10 pages
Published Online:
December 9, 2014
Citation
Sarzosa, DFB, & Ruggieri, C. "Correlation of Fracture Behavior in Circumferentially Cracked Pipes and Fracture Specimens Including Ductile Tearing." Proceedings of the 2014 10th International Pipeline Conference. Volume 3: Materials and Joining; Risk and Reliability. Calgary, Alberta, Canada. September 29–October 3, 2014. V003T07A001. ASME. https://doi.org/10.1115/IPC2014-33042
Download citation file:
23
Views
Related Proceedings Papers
Related Articles
Analysis of Laminations in X52 Steel Pipes by Nonlinear by Finite Element
J. Pressure Vessel Technol (May,2008)
Application of Constraint Corrected J - R Curves to Fracture Analysis of Pipelines
J. Pressure Vessel Technol (November,2006)
Failure of Locally Buckled Pipelines
J. Pressure Vessel Technol (May,2007)
Related Chapters
A 3D Cohesive Modelling Approach for Hydrogen Embrittlement in Welded Joints of X70 Pipeline Steel
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Fatigue Crack Growth Rates of API X70 Pipeline Steels in Pressurized Hydrogen Gas Compared with an X52 Pipeline in Hydrogen Service
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments