Three pipeline sections containing defects of interest were non-destructively tested in the field, cut out and shipped to a structural laboratory to undergo full-scale testing. The common objectives of the experiments were to determine (1) the leak initiation pressure and (2) the leak rate at various specified internal pressures. While two spools (Specimens A and B) contained through-wall cracks, the third (Specimen C) had a partial through-wall crack with similar characteristics. The capacity of through-wall defects to withstand a level of internal pressure without leaking is due to the resultant local, compressive hoop residual stresses. Specimen C underwent full-scale pressure cycling to further comprehend the crack propagation mechanism in order to correlate it to field operation and analytical fatigue life predictions.

To enhance the understanding of the physical crack behaviour as a function of internal pressure, a comprehensive finite element analysis (FEA) model was built using SIMULIA’s Abaqus software. The model inputs incorporated results from the above-mentioned laboratory tests, in addition to extensive radial, circumferential and axial residual stress measurements using the X-ray diffraction (XRD) technique, obtained on three pipe spools cut out from the same line. The resulting crack opening parameters from FEA were input into a closed-form fluid mechanics (FM) model, which was calibrated against a computational fluid dynamics (CFD) model, to determine the corresponding leak initiation pressures and leak rates. These outcomes were then compared to experimental findings. The FEA and FM models were subsequently employed to carry out a parametric study for plausible combinations of feature geometries, material properties, operational pressures and residual stresses to replicate field conditions.

The key outcome from this study is the experimental and analytical demonstration that, for given fluid properties and pressures, the leak threshold and leak rate for through-wall cracks are primarily dependent upon the crack geometry and local residual stress distributions.

This content is only available via PDF.
You do not currently have access to this content.