The capability of producing accurate numerical simulations of transient gas-liquid flows in gas pipelines has long been a serious concern in the oil industry. In this paper we are particularly interested in simulating this type of flow during the occurrence of a leak in the pipe. We use the flux-corrected transport (FCT) finite-difference method, which is second-order in space, to solve a one-dimensional single-pressure four-equation two-fluid model. We consider this two-phase flow to occur in a nearly horizontal pipeline characterized by the stratified-flow pattern, and we assume that the flow is isothermal with a compressible gas phase and an incompressible liquid phase. We model the leak as a source term in the mass conservation equations. The results of the numerical simulations allow the model sensitivity to be studied by changing the leak diameter and the leak location. From this analysis, we may observe how these parameters affect the pressure gradients along the pipeline that develop upstream and downstream of the leak.

This content is only available via PDF.
You do not currently have access to this content.