Based on the Winkler method, a pipe can be treated as a beam, and pipe-soil interactions can be represented by soil springs in the axial, horizontal and vertical directions. Pipe deflection and resultant forces are correlated by coefficient K in the equation F=Kδ, where F is the resultant force and δ is the pipe displacement. This paper studies pipe-soil interaction for pipelines buried in clay and sand subjected to displacements in oblique directions. The objective is to measure the effect of soil parameters on coefficient K as well as the maximum soil resistance. Pipe-soil behavior has been studied using the finite element software ABAQUS/CAE. There are 48 models in total with varying soil parameters, pipe burial depth and pipe-soil interaction friction for the investigation of the effect of each variable on pipe-soil behavior. In addition, the finite element results have been compared to the analytical results from American Lifelines Alliance guideline (ALA, 2001) and proposed failure envelopes in previous studies.

This content is only available via PDF.
You do not currently have access to this content.