This paper presents the results of experimental studies focused on the strain capacity of X80 linepipe. A full-scale bending tests of X80 grade, 48″ high-strain linepipes pressurized to 60% SMYS were conducted to investigate the compressive strain limit and tensile strain limit. The tensile properties Y/T ratios and uniform elongation of the pipes had variety. Three of four pipes are high strain pipes and these Y/T ratios are intentionally low with manufacturing method. One of these high-strain pipe was girth welded in its longitudinal center to investigate the effect of girth weld to strain capacity. The other was set as a conventional pipe that have higher Y/T ratio to make comparative study.

The compressive strain limit focused on the critical strain at the formation of local buckling on the compression side of bending. After pipe reaches its endurable maximum moment, one large developed wrinkle and some small wrinkles on the pipe surface during bending deformation were captured relatively well from observation and strain distribution measurement. The tensile strain limit is discussed from the viewpoint of competition of two fracture phenomena: ductile crack initiation/propagation from an artificial notch at the HAZ of the girth weld, and strain concentration and rupture in the base material at the tension (opposite) side of the local buckling position.

This content is only available via PDF.
You do not currently have access to this content.