The cold bend pipelines may be affected by the geotechnical movements due to unstable slopes, soil type and seismic activities. An extensive experimental study was conducted by Sen et al. in 2006 to understand the buckling behaviour of cold bend pipes. In their experiments, it was noted that one high pressure X65 pipe specimen failed under axial and bending loads due to pipe body tensile side fracture which occurred after the development of a wrinkle. The behaviour of this cold bend pipe specimen under bending load has been investigated numerically to understand the conditions leading to pipe body tension side fracture following the compression side buckling. Bending load has been applied on a finite element model of the cold bend by increasing the curvature of it according to the experimental studies conducted by Sen [1]. The bending loads have been applied on the model with and without internal pressure. The distribution of the plastic strains and von Mises stresses as well as the load–displacement response of the pipe have been compared for both load cases. In this way the experimental results obtained by Sen [1] have been verified. The visualization of the finite element analysis results showed that pipe body failure at the tension side of the cold bend takes place under equal bending loads only in case of combined loading with internal pressure.

This content is only available via PDF.
You do not currently have access to this content.