This work addresses a two-parameter description of crack-tip fields in bend and tensile fracture specimens incorporating the evolution of near-tip stresses following stable crack growth with increased values of the J-integral. The primary objective is to examine the potential coupled effects of geometry and ductile tearing on crack-tip constraint as characterized by the J-Q theory which enables more accurate correlations of crack growth resistance behavior in conventional fracture specimens. Plane-strain, finite element computations including stationary and growth analyses are described for SE(B) and clamped SE(T) specimens having different notch depth to specimen width ratio in the range 0.2 ≤ a/W≤0.5. A computational cell methodology to model Mode I crack extension in ductile materials is utilized to describe the evolution of J with Δa for the fracture specimens. Laboratory testing of an API 5L X70 steel using deeply cracked C(T) specimens is used to measure the crack growth resistance curve for the material and to calibrate the cell parameters. The present results provide additional understanding of the effects of constraint on crack growth which contributes to further evaluation of crack growth resistance properties of pipeline steels using SE (T) and SE(B) specimens.

This content is only available via PDF.
You do not currently have access to this content.