Battelle two curve model (BTCM) was developed in the 1970s and successfully used for determining arrest toughness for ductile gas transmission pipelines in terms of Charpy vee-notched (CVN) impact energy. Practice has shown that the BTCM is accurate only for pipeline grades up to X65, but not for high strength pipeline grades X70 and above. Different methods to improve the BTCM were proposed over the years. This paper reviews the BTCM and its modified methods in terms of CVN energy or drop weight tear test (DWTT) energy for determining arrest toughness of ductile gas pipeline steels, particularly for high strength pipeline steels X80 and beyond. This includes the often-used Leis correction method, the CSM factor method, Wilkowski DWTT method and others. The CVN and DWTT energy-based methods are evaluated and discussed through the critical analysis and comparison with full-scale experimental data. The objective is to identify reasonable methods to be used for determining the minimum fracture toughness required to arrest a ductile running crack in a modern high strength, high pressure gas pipeline. The results show that available nonlinear models to correlate the standard DWTT and CVN energies are questionable, and the Leis correction method is a viable approach for determining arrest toughness for high strength pipeline steels, but further study is needed for ultra-high pipeline grades. Suggestions for further improving the BTCM are discussed.
Skip Nav Destination
2012 9th International Pipeline Conference
September 24–28, 2012
Calgary, Alberta, Canada
Conference Sponsors:
- International Petroleum Technology Institute
- Pipeline Division
ISBN:
978-0-7918-4514-1
PROCEEDINGS PAPER
CVN and DWTT Energy Methods for Determining Fracture Arrest Toughness of High Strength Pipeline Steels
Xian-Kui Zhu,
Xian-Kui Zhu
Battelle Memorial Institute, Columbus, OH
Search for other works by this author on:
Brian N. Leis
Brian N. Leis
Battelle Memorial Institute, Columbus, OH
Search for other works by this author on:
Xian-Kui Zhu
Battelle Memorial Institute, Columbus, OH
Brian N. Leis
Battelle Memorial Institute, Columbus, OH
Paper No:
IPC2012-90624, pp. 565-573; 9 pages
Published Online:
July 25, 2013
Citation
Zhu, X, & Leis, BN. "CVN and DWTT Energy Methods for Determining Fracture Arrest Toughness of High Strength Pipeline Steels." Proceedings of the 2012 9th International Pipeline Conference. Volume 3: Materials and Joining. Calgary, Alberta, Canada. September 24–28, 2012. pp. 565-573. ASME. https://doi.org/10.1115/IPC2012-90624
Download citation file:
45
Views
Related Proceedings Papers
Related Articles
The Effect of Prestrain on Ductile Fracture Toughness of Reeled Pipeline Steels
J. Pressure Vessel Technol (June,2011)
Yield-Before-Break Fracture Mechanics Analysis of High-Strength Steel
Pressure Vessels
J. Pressure Vessel Technol (February,1995)
Fracture Toughness and Pressure Vessel Performance
J. Eng. Power (October,1964)
Related Chapters
DEVELOPMENTS IN STRAIN-BASED FRACTURE ASSESSMENTS - A PERSPECTIVE
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Recent Developments in J Ic Testing
Developments in Fracture Mechanics Test Methods Standardization
Investigation of Some Problems In Developing Standards for Precracked Charpy Slow Bend Tests
Developments in Fracture Mechanics Test Methods Standardization