High strength linepipe steels have to fulfil increasing property demands in modern pipeline applications. The transport of large gas volumes at high pressures from remote areas to the market is achieved in the most economical way by large diameter pipelines. For the last 30 years, high strength heavy plates for pipes and pipe bends were developed and produced at Salzgitter Mannesmann Grobblech. These products were steadily improved for example in terms of toughness and fracture behaviour at low temperatures. This is a strong focus of materials development around the world.

Modern high-strength heavy plates used in the production of UOE pipes are generally produced by thermomechanical rolling followed by accelerated cooling (TMCP). The combination of high strength and high toughness of these steels is a result of the bainitic microstructure realised by TMCP and are strongly influenced by the rolling and cooling conditions. This paper gives an overview of the development of high strength plates for line pipe application at Salzgitter Mannesmann Grobblech. From comparably thin-walled X80 plates with no or medium DWTT requirements to recent requirements for approx. 28 mm thick X80 plates with requirements of 75/85% shear area fraction at −30°C and more than 250 J Charpy energy at −40°C the development work and the result of the last five years are described and presented.

Classical light-optical characterisation of the microstructure of these steels is at its limits because the size of the observed features is too small to allow reliable quantitative results. Therefore Salzgitter Mannesmann Grobblech and Salzgitter Mannesmann Forschung (SZMF) developed alternative methods with the aim of a quantification of microstructure features and a correlation of those with the mechanical properties and processing conditions.

In several investigations, the information is related to the mechanical properties of the plate material. It was found that a variation of the processing conditions has a direct influence on parameters that are accessible through the EBSD method and correlates with mechanical properties. The detailed correlations vary depending on steel grade and TMCP strategy. The results have to be carefully interpreted and help understanding the connection between processing and properties. Consequently this can be used as valuable input for the definition of the processing window for heavy plate production with optimized properties.

This content is only available via PDF.
You do not currently have access to this content.