In recent years, the key application requirement of the ERW line pipe has been its toughness, including the weld seam.

It is known that, among defects generated at the weld seam, the penetrator defect affects toughness and is difficult to control by welding condition[1–4].

Generally speaking, ERW pipes are welded with exposure to air, and oxides are produced on the surface of the melted metal during the process. The discharge of this melted metal by electromagnetic force and squeezing produced at the current welding route is effective in eliminating the penetrator, and constantly optimizing the welding heat input means this defect can be constantly reduced.

To optimize the welding heat input, therefore, it is important to determine the welding phenomena occurring at the welding spot and contrast them with the defect area ratio. We have studied (examined) the welding phenomena, optimum heat input power and the welding defect generation mechanism. Consequently, it was revealed that by varying the welding speed, Vee convergence angle and welding heat input, etc., a new categorization of welding phenomena as Types 1, 2, 3, and 2′ was possible.

In the case of Type 2 and 2′ welding phenomena, the welding defect area ratio decreases, which resulted in a sound seam weld with high toughness. If these two welding phenomena are compared, the wider heat input power range of Type 2′ is preferable for the HF-ERW manufacturing process. The higher heat input of Type 2′ compared to Type 2 compensates for the abutting surface angle fluctuation, meaning it is also preferable for pipe manufacturing. Consequently, the control of the Type 2′ welding phenomenon is preferable for the HF-ERW manufacturing process.

This content is only available via PDF.
You do not currently have access to this content.