Current federal regulations in the U.S. require excavation of plain dents identified through in-line inspection surveys based primarily on depth. Industry experience, and previous research, has shown that the depth of the dent, alone, is not sufficient to assess dent severity and that releases could occur at dents below the excavation threshold (Dawson, 2006). Canada’s National Energy Board released a safety advisory on June 18, 2010, to all companies under their jurisdiction regarding two incidents involving shallow dents. The safety advisory stated that all integrity management programs should be reviewed and updated where appropriate to address the threat posed by shallow dents. Similar incidents have raised awareness in the United States and elsewhere around the world.

This paper focuses on the fitness for service of dents identified by in-line inspection surveys. The fitness for service assessment provides an estimated remaining life of a dent based on the geometry of the dent and current pressure cycling of the pipeline. Dynamic pressure cycling at each dent location is estimated using the upstream and downstream pressure cycle data, elevation, and distance along the pipe. The dynamic pressure cycle data at each dent is then converted into equivalent stress cycles based on the results of rainflow cycle counting.

Maximum strain levels of the dents are calculated based on the geometry of the dent as determined by radial sensor measurements from the in-line inspection survey. The combination of assessment methods provides estimates of remaining fatigue life and peak strain which can be used for prioritizing the investigation and remediation of plain dents in pipelines.

Finite element analysis (FEA) is performed for one dent to calculate the maximum strain levels and identify stress concentration areas. These results are compared with the values applied during the fitness for service assessment to validate the accuracy and conservatism of the calculation methods used. An idealized dent will be analyzed to investigate the strain calculations in ASME B31.8 and localize maximum strain values.

This content is only available via PDF.
You do not currently have access to this content.