Dents in buried pipelines can occur due to a number of potential causes; the pipe resting on rock, third party machinery strike, rock strikes during backfilling, amongst others. The long-term integrity of a dented pipeline segment is a complex function of a variety of parameters, including pipe geometry, indenter shape, dent depth, indenter support, pressure history at and following indentation. In order to estimate the safe remaining operational life of a dented pipeline, all of these factors must be accounted for in the analysis.

The paper discusses the full-scale dent testing being completed to support the development of pipeline integrity management criteria and is a continuation of the work discussed in previous IPC papers [1,2]. The material and structural response of the pipe test segments during dent formation and pressure loading has been recorded to support numerical model development. The full scale experimental testing is being completed for pipe test specimens in the unrestrained and restrained condition using different indentation depths and indenter sizes. The dents are pressure cycled until fatigue failure in the dent. This paper presents typical data recorded during trial including indentation load/displacement curves, applied pressures, strain gauges along the axial and circumferential centerlines, as well as dent profiles.

The use of the full-scale mechanical damage test data described in this paper in calibrating and validating a finite element model based integrity assessment model is outlined. The details of the integrity assessment model are described along with the level of agreement of the finite element model with the full scale trial results. Current and future applications of the integrity assessment model are described along with recommendations for further development and testing to support pipeline integrity management.

This content is only available via PDF.
You do not currently have access to this content.