Environmental cracking, such as stress-corrosion cracking (SCC), is a significant issue for a variety of industries, such as those dealing with power generation — nuclear, oil and gas production, and pipeline transmission, etc. SCC is particularly of concern in that catastrophic failures can occur even at low applied stress levels (e.g., residual stress produced by welding). Thus, it is critical to evaluate the behavior of SCC for structural integrity assessments.
In this paper, three different crack growth methods (i.e., idealized crack growth analysis, crack growth analysis using finite element alternating method; FEAM, and the natural crack growth method) are summarized. These methods all utilize the stress intensity factor for crack growth evaluations. Thus, these methods can be used for assessment of environmental cracking that is based on stress intensity factor. Various examples are shown in this paper to demonstrate the applicability of these methods. Comparisons of results obtained from different methods are also provided in this paper.