The ability to produce accurate numerical simulations of transient two-phase flows in gas pipelines has long been an important issue in the oil industry. A reliable prediction of such flows is a difficult task to accomplish due to the numerous sources of uncertainties, such as the basic two-phase flow model, the flow-pattern models, the initial condition and the numerical method used to solve the system of partial differential equations. Several numerical methods, conservative or not, of first- and second-order accuracies may be used to discretize the problem. In this paper we use the flux-corrected transport (FCT) finite-difference method to solve a one-dimensional single-pressure four-equation two-fluid model for the two-phase flow that occurs in a nearly horizontal pipeline characterized by the stratified-flow pattern. Because the FCT algorithm is of indeterminate order, we use a test case to assess the spatial and time accuracies for the specific class of hyperbolic problem that we obtain with the modeling employed here. The results show that the method is first order in time and second order in space, which have important consequences on the choice of mesh spacing and time step for a desired accuracy.

This content is only available via PDF.
You do not currently have access to this content.