Buried pipelines can be locally buckled (wrinkled) by a load combination of axial deformations and rotations. Previous test results show that those wrinkled pipes do not lose their safety and integrity if they possess sufficient ductility. However, if those wrinkled pipes are going to continue operating under the condition of cyclic loading, their low cycle fatigue (LCF) behaviours have to be thoroughly investigated. This paper presents LCF tests for two full-scale pipes and the relevant results. Those two pipes were tested under a complicated loading procedure. The entire loading consisted of two stages: the monotonic loading stage and the cyclic loading stage. The monotonic loading was designed to form an enclosed wrinkle around the pipe under a locked curvature, and the cyclic loading was planned to fracture the wrinkled pipe. Firstly, the loading procedure was demonstrated by viewing the spectra of MTS load, MTS stroke, jack load, internal pressure, as well as pipe end average rotation. Secondly, the global behaviour was investigated by examining the relation between bending moment and global curvature, the relation between pivot axial load and relative axial deformation (RAD) between pivots, and the relation between internal pressure and RAD between pivots. Thirdly, the phenomenon of ‘deformation localization’ was studied by investigating the relation between the global RAD and the local RAD, and it was found that the global deformation was totally localized into the wrinkle area. Fourthly, the failure modes were discussed and it was found that the seam weld was more liable to be fractured under the condition of cyclic axial deformation. At last, the failure mechanism was investigated by macroscopically examining fracture surfaces. It found out that the cracks initiated from multi-locations on surfaces, then those cracks propagated from surfaces into the interior and finally fractured the pipe wall. Moreover, it found out that more damage was generated from the inside surface than from the outside surface.

This content is only available via PDF.
You do not currently have access to this content.