Measurements of decompression wave speed in conventional and rich natural gas mixtures following rupture of a high-pressure pipe have been conducted. A high pressure stainless steel rupture tube (internal diameter = 38.1 mm, and 42 m long), has been constructed and instrumented with 16 high frequency-response pressure transducers mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures of 33–37 MPa-a and a temperature range of 21 to 68 °C. The experimentally determined decompression wave speeds were compared to both GASDECOM and PIPEDECOM predictions with and without non-equilibrium condensation delays at phase crossing. The interception points of the isentropes representing the decompression process with the corresponding phase envelope of each mixture were correlated to the respective plateaus observed in the decompression wave speed profiles. Additionally, speeds of sound in the undisturbed gas mixtures at the initial pressures and temperatures were compared to predictions by five equations of state, namely BWRS, AGA-8, Peng-Robinson, Soave-Redlich-Kwong, and GERG. The measured gas decompression curves were used to predict the fracture arrest toughness needed to assure fracture control in natural gas pipelines. The rupture tube test results have shown that the Charpy fracture arrest values predicted using GASEDCOM are within +7 (conservative) and −11% (non-conservative) of the rupture tube predicted values. Similarly, PIPEDECOM with no temperature delay provides fracture arrest values that are within +13 and −20% of the rupture tube predicted values, while PIPEDECOM with a 1 °C temperature delay provides fracture arrest values that are within 0 and −20% of the rupture tube predicted values. Ideally, it would be better if the predicted values by the equations of state were above the rupture tube predicted values to make the predictions conservative but that was not always the case.

This content is only available via PDF.
You do not currently have access to this content.