Understanding the effect of soil-pipeline interactions in the event of large ground movement is an important consideration for pipeline designer. Both experimental investigation and computational analyses play significant roles in this research. As part of this effort, a framework incorporating continuum soil mechanics and advanced finite element approach (i.e., ALE and SPH method) for modeling soil pipe interaction is developed. The overall objective is to develop, validate and apply 3D continuum modeling technique to assess the performance of pipeline system subjected to large soil displacement. The numerical models than may be used to predict the wrinkle formation and post formation behavior of the pipeline considering the effect of the soil confinement, and develop a comprehensive wrinkle integrity assessment process. This is the second paper (Part II) in a series of two papers. In the first paper a three-dimensional Continuum models using MM-ALE (Multi-material Arbitrary Eulerian Lagrangian) and SPH (smooth particle hydrodynamics) approaches are developed and run using LS-DYNA. The results are compared with published experimental data of large-scale test to verify the numerical analysis methods. In this paper (Part II) the effects of soil restraint on the response of the pipe/soil systems (e.g., pipeline Wrinkle and buckle, strain demand) are discussed.

This content is only available via PDF.
You do not currently have access to this content.